Isolation Power Transformers
Toroid Platform SMD - PH9385.XXXNL and PM2155.XXXNL

Push Pull Converter Transformer
IEC 60950 and 61558 basic insulation
Compliant, 12mm creepage
4KVrms isolation (600Vrms continuous)

Electrical Specifications @ 25°C – Operating Temperature -40°C to +125°C

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Inductance (1-4) μH</th>
<th>Leaktage Inductance (1-4) μH MAX</th>
<th>Capacitance (1, 4) pF MAX</th>
<th>DCR (1-4) Ω MAX</th>
<th>DCR (5-8) Ω MAX</th>
<th>ET (1-4) V(μsec Max)</th>
<th>Turns Ratio</th>
<th>Isolated Voltage Vrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH9385.011NL</td>
<td>3200</td>
<td>6.0</td>
<td>36</td>
<td>1.00</td>
<td>1.00</td>
<td>109</td>
<td>1CT : 1CT</td>
<td>4000</td>
</tr>
<tr>
<td>PH9385.045NL</td>
<td>3200</td>
<td>4.0</td>
<td>36</td>
<td>1.10</td>
<td>1.25</td>
<td>98</td>
<td>4CT : 5CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.034NL</td>
<td>2600</td>
<td>3.0</td>
<td>36</td>
<td>1.00</td>
<td>1.50</td>
<td>98</td>
<td>3CT : 4CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.012NL</td>
<td>2600</td>
<td>3.0</td>
<td>40</td>
<td>1.00</td>
<td>1.90</td>
<td>98</td>
<td>1CT : 2CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.038NL</td>
<td>2600</td>
<td>3.0</td>
<td>40</td>
<td>1.00</td>
<td>2.20</td>
<td>98</td>
<td>3CT : 8CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.013NL</td>
<td>2600</td>
<td>3.0</td>
<td>40</td>
<td>1.00</td>
<td>2.75</td>
<td>98</td>
<td>1CT : 3CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.027NL</td>
<td>2600</td>
<td>3.0</td>
<td>40</td>
<td>1.00</td>
<td>3.00</td>
<td>98</td>
<td>2CT : 7CT</td>
<td></td>
</tr>
<tr>
<td>PH9385.015NL</td>
<td>1350</td>
<td>3.0</td>
<td>30</td>
<td>0.80</td>
<td>3.20</td>
<td>70</td>
<td>1CT : 5CT</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The ET Max is calculated to limit the core loss and temperature rise at 200KHz based on a bipolar flux swing of 180mT Peak.
2. For Push-Pull topology, where the voltage is applied across half the primary winding turns, the ET needs to be derated by 50% for the same flux swing.
3. The applied ET may need to be further derated for higher frequencies based on the temperature rise which results from the core and copper losses
 A. To calculate total copper loss (W), use the following formula:
 Copper Loss (W) = I*rms*Primary * DCR_Primary + I*rms*Secondary * DCR_Secondary
 B. To calculate total core loss (W), use the following formula:
 Core Loss (W) = 3.93E-10 * (Frequency in kHz)^1.7 * (180 * ET/ET Max)^2.17
 Where ET is the applied Volt Second, ET Max is the rated Volt Second for 180mT flux swing
 C. To calculate temperature rise, use the following formula:
 Temperature Rise (°C) = 100 * (Core Loss(W) + Copper Loss(W))

4. The AEC-Q200 temperature and humidity operational life testing was completed using a dielectric strength test of 4000Vdc.
5. Optional Tape & Reel packing can be ordered by adding a "T" suffix to the part number (i.e. PH9385.011NL becomes PH9385.011NLT). Pulse complies to industry standard tape and reel specification EIA481.
6. The "NL" suffix indicates an RoHS-compliant part number.
7. Continuous isolation voltage confirmed by 125°C/1000hrs accelerated aging with the bias voltage applied between primary and secondary windings.
8. The PM2155.XXXNL part numbers are AEC-Q200 and IATF16949 certified. The mechanical dimensions are 100% tested in production but do not necessarily meet a product capability index (Cpk) >1.33 and therefore may not strictly conform to PPAP.

PH9385.0XNL and PM2155.0XNL

Mechanical Schematic

Weight .. 2.5/grams
Tray ... 80/tray

Dimensions: Inches mm
Unless otherwise specified, all tolerances are ± .010 .025
Isolation Power Transformers
Toroid Platform SMD - PH9385.XXXNLT and PM2155.XXXNLT

PH9385.XXXNL is a series of high isolation power supply transformer drivers. Intended to operate in a fixed duty cycle Push Pull topology, it is a part of a low cost solution for delivering lower power (up to 2.5W) from a low voltage source. A typical implementation would be an isolated RS-485 power supply driver circuit, the design is compatible with the MAXIM™ MAX253 IC. Other IC’s include Texas SN6501 UCC2808, Analog ADuM4070, ADuM447x.

A schematic diagram for the Push Pull converter topology is given below.

For a fixed 50% duty cycle mode of operation, the output voltage is simply determined by the input voltage and turns ratio. So, with the available turns ratios, a variety of output voltages can be selected. This range can be extended by implementing different topologies such as forward or bridge and can be used with controllers offered by different IC vendors for a number of different applications.

For More Information

Pulse Worldwide Headquarters
15255 Innovation Drive Ste 100
San Diego, CA 92128
U.S.A.

Pulse Europe
Pulse Electronics GmbH
Am Rottland 12
58540 Meinerzhagen
Germany

Pulse China Headquarters
Pulse Electronics (ShenZhen) CO., LTD
D708, Shenzhen Academy of Aerospace Technology,
The 10th Keji South Road, Nanshan District, Shenzhen,
P.R. China 518057

Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200336
China

Pulse South Asia
3 Fraser Street
0428 DUO Tower
Singapore 189352

Pulse North Asia
1F, No.111 Xiuyuan Rd
Zhongli City
Taoyuan City 32057
Taiwan (R.O.C)

Tel: 858 674 8100
Fax: 858 674 8262
Tel: 49 2354 777 100
Fax: 49 2354 777 168
Tel: 86 755 33966678
Fax: 86 755 33966700
Tel: 86 21 62787060
Fax: 86 21 62786973
Tel: 65 6287 8998
Fax: 65 6280 0080
Tel: 886 3 4356768
Fax: 886 3 4356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.